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A.1. Transformations through Homography

We use homography to introduce varied perspective
transformations so that they can distort the same image re-
gions differently as seen in Fig. A.1. This helps the detector
to learn robust object features and simultaneously optimize
an aggregator with a different set of homographies which
can bridge the gap between two domains.

A.2. Feature Maps Activation

We show in Fig. A.2 how different homographies gen-
erate activation in the feature maps. Not all homographies
look at the same image region, therefore the task of the ag-
gregator is to bring in the activations from different trans-
formations together.

A.3. Other Aggregator Architecture

We implement aggregator using standard functions to
combine {Fy, } N ;. Tab. A.1 illustrates this study for FoV
adaptation, where the training is done under mean teacher
formalism to learn |7| = N = 5. We see that these non-
learnable aggregators are able to outperform MT baseline
(Sec. 5.4, in the main paper) suggesting that including trans-
formations helps to bridge the geometric shifts.

Function Car AP@0.5
sum T8 1+014
mean T78.7 + 005
max 78.7+ 012
min+max 78.9+ 043
MT 78.3
Ours 79.9+ 014

Table A.1. Aggregator Architecture without learnable parameters

A.4. Why learning transformations?

We compare our approach against (a) a fixed set of ran-
dom transformations used throughout the training and in-

ference; (b) sampling random homographies throughout
training and inference; (c) sampling random homographies
throughout training and identity homographies during infer-
ence. We use the FoV adaptation task with N = 5 homo-
graphies and keep the original training step (i) and step (ii)
(Sec. 4.2 in main paper) unchanged for all cases. Our ap-
proach achieves 79.9 AP vs (a) 78.2, (b) 79.3, (c) 77.7. This
shows that the choice of homographies significantly im-
pacts performance. Interestingly, (b) can be seen as an en-
semble method that outperforms the MT and AT baselines
(Tab. 1 in main paper). Our proposed approach nonethe-
less achieves better performance by learning the transfor-
mations. This study further evidences the importance of
transformations and the need to learn them. Additionally,
we can achieve better inference speed w.r.t randomly sam-
pling transformations.

A.5. FoV Decreasing Results

We provide additional results for the decreasing-FoV
case, i.e., KITTI(source) to Cityscapes(target): (a) MT:
47.1, (b) MT+PIT: 48.5, (c) Ours (N = 5): 49.3. These
results further show the effectiveness of our method.

A.6. Diversity in T

In order to show that diverse transformations are learned,
we set H; = I and train our mean teacher formulation.
Fig. A.4 shows diverse set of transformations learned in
FoV adaptation task. Even though we do not enforce di-
versity among homographies, it is learned through our ap-
proach.

A.7. Evolution of T

We provide qualitative results for 7 learned in FoV and
Viewpoint adaptation, Fig. A.5 and Fig. A.8, respectively.
The qualitative results for the same adaptation task can be
seen in Fig. A.6 and Fig. A.7, respectively.
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Figure A.1. Transformations: Here we demonstrate how the two objects in the original image undergo different perspective transforma-
tions. Our task is to learn robust object features under such transformations and use them to bring the two domains closer while being
agnostic to the camera parameters. We train with a multiple set of transformations to change the same image region differently. With our
trainable aggregator, we can then combine features from different regions to help in improving the detector’s performance.

A.8. Hyperparameter details

Augmentations. We use Detectron2 [2]s implementation
for random crop and torchvision ! for color jittering.

Kind Details

Random Crop  Relative Range: [0.3, 1]
Color Jitter Brightness=.5, Hue=.3

Table A.2. Augmentations

FasterRCNN [1] training. We train our base network
with random crop strategy on with only source data, which
is Cityscapes for both the adaptation tasks. The trained
model achieves 74.7 and 58.4 AP@0.5 score on the source
domain validation set for car and person detection, respec-
tively.

Mean Teacher Training For our mean teacher setup
(Sec. 4.2, in the main paper), we choose 7 = 0.6 as the con-

Ihttps://pytorch.org/vision/stable/transforms.
html

fidence threshold for the pseudo-labels and evaluate con-
tribution of target domain loss for different A\. Fig. A.11
summarizes this study. We see that method performs worse
when we have equal contribution from both source and tar-
get domain loss A = 1, as the false positives in the target
domain quickly deteriorate the training. Fig. A.12, evalua-
tion for different values of 7.

A.9. Architecture details

Our aggregator architecture consists of three convolution
layers along with BatchNorm and Relu layers after each
convolution. Tab. A.3 shows the details of different layers.
Here, C' = 1024 corresponds to the output of the feature
extractor.
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Figure A.2. Feature Maps: Top row: predictions of our network and feature map after aggregator. Left column: Image I, transformed
by 5 learnt homographies; Right Column: Feature maps F warped by corresponding H ~* which are input to aggregator. Each transform
distorts the image regions differently. Most of the cars are on the left side and of small size in the image. H; distorts the left side leading to
no activation(H; ' F) for the object. H3 which causes zoom-in effect has the strongest activation as the smaller objects are visible better
here. Overall aggregator feature map contains activation from the region where the objects exist. The aggregator has learnt how to combine
regions with activations under different homographies. The feature maps are generated by taking maximum over channel dimension.



Per pixel coordinate error
o]

e
-
i B T P,

T T
o 5 10 15 20
Number of homography

v
5

100

200

300

200 400 600 800
Coordinate errormap 1 H

200 400 6800 800

Coordinate error map 5 H

Hom oW B,

0 200 400 600 800

200 400 600

Aggregation mask 5 H

200 400 600 800

Individual homography result 5 H Coordinate error map 25 H

Figure A.3. Approximating PIT with homographies. Left column: Visualization of each homography use to approximate PIT with 5
transforms; the top one is the identitity, and the following ones are in order of increasing compression. Center column: Contribution of
each homography to the final remapping. Right column: The top figure shows the per pixel coordinate error when compared to the PIT
remapping as a function of the number of homographies used in the approximation; the three bottom figures depict the coordinate error
maps for 1, 5, and 25 homographies used to approximate PIT (note the scale change in pixel coordinate error).
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Figure A.4. Diversity in 7: We train | 7| = 5 initialized with #; = I. Homographies parameterized by s, sy, Iz, [y evolve as the training
proceeds and tend to become diverse. Each homography is shown in different color. Even though we do not enforce any diversity, our
approach learns diverse set of transformations. With these learned homorgraphies, we achieve 79.5 AP@0.5 score for FoV adaptation task.
The best score is achieved at iteration = 22k shown with the vertical line.
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Figure A.5. Quantitative results for the corresponding results in Figure A.6. The randomly initialized transforms, parameterized by
Sas Sy, lz, Ly, evolve to achieve the best score at 28k iterations (shown by the vertical bar). The colors represent different homographies.
Some set of parameters converges to similar value but overall each homography is unique.



Figure A.6. FoV adaptation: The randomly initialized homographies evolve as the training progresses to improve the overall AP score.
We train with 5 homographies and show how they transform an image for the corresponding FoV adaptation task.
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Figure A.7. Viewpoint adaptation: The randomly initialized homographies evolve as the training progresses to improve the overall AP
score. We train with 5 homographies and show how they transform an image for the corresponding viewpoint adaptation task.
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Figure A.8. Quantitative results for the corresponding results in Figure A.7. The randomly initialized transforms, parameterized by
Sas Sy, lz, Ly, evolve to achieve the best score at 8k iterations (shown by the vertical bar). The colors represent different homographies.
Some s, parameters start at a similar value but eventually diverge.



Figure A.9. Evolution of 7. We showcase how two homographies, H1 and Hs, evolve across the training iterations and influence
the prediction scores. Starting from random homographies at iteration 0, the transformations converge to homographies suited for FoV
adaptation. The detection scores consequently increase throughout the training process. Moreover, this increase in detection score is
reflected in the overall AP@0.5 score, which jumps from 74.1 to 78.2.

Figure A.10. Viewpoint Adaptation: Qualitative Results. We visualize results for viewpoint adaptation between Cityscapes and MOT20-
02. The left image depicts the ground truth, the middle one the results of Mean Teacher adaptation, and the right one those of our approach.
Our approach recovers more detections (e.g., the woman near the stroller in the center-left) while having fewer false positives (overlapping
box in bottom-left corner of the MT results).
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Table A.3. Aggregator Architecture for | 7| = N
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Figure A.11. Study on A for7 = 0.6, |T| =5 Y P P
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Figure A.12. Study on 7 for FoV and Viewpoint adaptation using
A =0.01,0.1, respectively. Here ,| 7| = 5 is used for the study.
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